Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Immunobiology ; 228(2): 152351, 2023 03.
Article in English | MEDLINE | ID: covidwho-2245868

ABSTRACT

We have attempted to explore further the involvement of complement components in the host COVID-19 (Coronavirus disease-19) immune responses by targeted genotyping of COVID-19 adult patients and analysis for missense coding Single Nucleotide Polymorphisms (coding SNPs) of genes encoding Alternative pathway (AP) components. We have identified a small group of common coding SNPs in Survivors and Deceased individuals, present in either relatively similar frequencies (CFH and CFI SNPs) or with stark differences in their relative abundance (C3 and CFB SNPs). In addition, we have identified several sporadic, potentially protective, coding SNPs of C3, CFB, CFD, CFH, CFHR1 and CFI in Survivors. No coding SNPs were detected for CD46 and CD55. Our demographic analysis indicated that the C3 rs1047286 or rs2230199 coding SNPs were present in 60 % of all the Deceased patients (n = 25) (the rs2230199 in 67 % of all Deceased Males) and in 31 % of all the Survivors (n = 105, p = 0.012) (the rs2230199 in 25 % of all Survivor Males). When we analysed these two major study groups using the presence of the C3 rs1047286 or rs2230199 SNPs as potential biomarkers, we noticed the complete absence of the protective CFB rs12614 and rs641153 coding SNPs from Deceased Males compared to Females (p = 0.0023). We propose that in these individuals, C3 carrying the R102G and CFB lacking the R32W or the R32Q amino acid substitutions, may contribute to enhanced association dynamics of the C3bBb AP pre-convertase complex assembly, thus enabling the exploitation of the activation of the Complement Alternative pathway (AP) by SARS-CoV-2.


Subject(s)
COVID-19 , Macular Degeneration , Male , Female , Humans , Complement Factor B/genetics , Complement C3/genetics , Polymorphism, Single Nucleotide , Genotype , Macular Degeneration/genetics , Complement Factor H/genetics , SARS-CoV-2 , Complement C2/genetics
2.
J Am Soc Nephrol ; 32(1): 99-114, 2021 01.
Article in English | MEDLINE | ID: covidwho-1496673

ABSTRACT

BACKGROUND: C3 glomerulopathy (C3G) is characterized by the alternative-pathway (AP) hyperactivation induced by nephritic factors or complement gene mutations. Mice deficient in complement factor H (CFH) are a classic C3G model, with kidney disease that requires several months to progress to renal failure. Novel C3G models can further contribute to understanding the mechanism behind this disease and developing therapeutic approaches. METHODS: A novel, rapidly progressing, severe, murine model of C3G was developed by replacing the mouse C3 gene with the human C3 homolog using VelociGene technology. Functional, histologic, molecular, and pharmacologic assays characterize the presentation of renal disease and enable useful pharmacologic interventions in the humanized C3 (C3hu/hu) mice. RESULTS: The C3hu/hu mice exhibit increased morbidity early in life and die by about 5-6 months of age. The C3hu/hu mice display elevated biomarkers of kidney dysfunction, glomerulosclerosis, C3/C5b-9 deposition, and reduced circulating C3 compared with wild-type mice. Administration of a C5-blocking mAb improved survival rate and offered functional and histopathologic benefits. Blockade of AP activation by anti-C3b or CFB mAbs also extended survival and preserved kidney function. CONCLUSIONS: The C3hu/hu mice are a useful model for C3G because they share many pathologic features consistent with the human disease. The C3G phenotype in C3hu/hu mice may originate from a dysregulated interaction of human C3 protein with multiple mouse complement proteins, leading to unregulated C3 activation via AP. The accelerated disease course in C3hu/hu mice may further enable preclinical studies to assess and validate new therapeutics for C3G.


Subject(s)
Complement C3/genetics , Disease Models, Animal , Glomerulonephritis, Membranoproliferative/genetics , Kidney Diseases/genetics , Animals , Complement C3/metabolism , Complement Pathway, Alternative/genetics , Exons , Gene Expression Regulation , Glomerulonephritis, Membranoproliferative/metabolism , Humans , Kidney Diseases/metabolism , Liver/metabolism , Male , Mice , Mice, Knockout , Microscopy, Fluorescence , Phenotype , Polymorphism, Single Nucleotide , Renal Insufficiency/genetics , Renal Insufficiency/metabolism
3.
Int J Mol Sci ; 22(13)2021 Jul 04.
Article in English | MEDLINE | ID: covidwho-1304672

ABSTRACT

Cardiovascular diseases have attracted our full attention not only because they are the main cause of mortality and morbidity in many countries but also because the therapy for and cure of these maladies are among the major challenges of the medicine in the 21st century [...].


Subject(s)
Cardiovascular Diseases/etiology , Animals , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Complement C3/genetics , Complement C3/metabolism , Extracellular Vesicles/metabolism , Genetic Markers , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Cardiovascular , Myosin Light Chains/genetics , Myosin Light Chains/metabolism , Risk Factors
5.
Clin Immunol ; 226: 108726, 2021 05.
Article in English | MEDLINE | ID: covidwho-1179332

ABSTRACT

Recent studies suggest excessive complement activation in severe coronavirus disease-19 (COVID-19). The latter shares common characteristics with complement-mediated thrombotic microangiopathy (TMA). We hypothesized that genetic susceptibility would be evident in patients with severe COVID-19 (similar to TMA) and associated with disease severity. We analyzed genetic and clinical data from 97 patients hospitalized for COVID-19. Through targeted next-generation-sequencing we found an ADAMTS13 variant in 49 patients, along with two risk factor variants (C3, 21 patients; CFH,34 patients). 31 (32%) patients had a combination of these, which was independently associated with ICU hospitalization (p = 0.022). Analysis of almost infinite variant combinations showed that patients with rs1042580 in thrombomodulin and without rs800292 in complement factor H did not require ICU hospitalization. We also observed gender differences in ADAMTS13 and complement-related variants. In light of encouraging results by complement inhibitors, our study highlights a patient population that might benefit from early initiation of specific treatment.


Subject(s)
ADAMTS13 Protein/genetics , COVID-19/genetics , Complement C3/genetics , Genetic Predisposition to Disease/genetics , Thrombomodulin/genetics , Aged , Algorithms , COVID-19/physiopathology , Complement Activation , Complement Factor H/genetics , Critical Care , Female , Genetic Testing , High-Throughput Nucleotide Sequencing , Hospitalization/statistics & numerical data , Humans , Intensive Care Units , Male , Middle Aged , Risk Factors , Severity of Illness Index , Thrombotic Microangiopathies/genetics
6.
Clin Immunol ; 220: 108598, 2020 11.
Article in English | MEDLINE | ID: covidwho-778645

ABSTRACT

Growing clinical evidence has implicated complement as a pivotal driver of COVID-19 immunopathology. Deregulated complement activation may fuel cytokine-driven hyper-inflammation, thrombotic microangiopathy and NET-driven immunothrombosis, thereby leading to multi-organ failure. Complement therapeutics have gained traction as candidate drugs for countering the detrimental consequences of SARS-CoV-2 infection. Whether blockade of terminal complement effectors (C5, C5a, or C5aR1) may elicit similar outcomes to upstream intervention at the level of C3 remains debated. Here we compare the efficacy of the C5-targeting monoclonal antibody eculizumab with that of the compstatin-based C3-targeted drug candidate AMY-101 in small independent cohorts of severe COVID-19 patients. Our exploratory study indicates that therapeutic complement inhibition abrogates COVID-19 hyper-inflammation. Both C3 and C5 inhibitors elicit a robust anti-inflammatory response, reflected by a steep decline in C-reactive protein and IL-6 levels, marked lung function improvement, and resolution of SARS-CoV-2-associated acute respiratory distress syndrome (ARDS). C3 inhibition afforded broader therapeutic control in COVID-19 patients by attenuating both C3a and sC5b-9 generation and preventing FB consumption. This broader inhibitory profile was associated with a more robust decline of neutrophil counts, attenuated neutrophil extracellular trap (NET) release, faster serum LDH decline, and more prominent lymphocyte recovery. These early clinical results offer important insights into the differential mechanistic basis and underlying biology of C3 and C5 inhibition in COVID-19 and point to a broader pathogenic involvement of C3-mediated pathways in thromboinflammation. They also support the evaluation of these complement-targeting agents as COVID-19 therapeutics in large prospective trials.


Subject(s)
Betacoronavirus/pathogenicity , Complement C3/antagonists & inhibitors , Complement C5/antagonists & inhibitors , Complement Inactivating Agents/therapeutic use , Coronavirus Infections/drug therapy , Immunologic Factors/therapeutic use , Pneumonia, Viral/drug therapy , Respiratory Distress Syndrome/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19 , Cohort Studies , Complement Activation/drug effects , Complement C3/genetics , Complement C3/immunology , Complement C5/genetics , Complement C5/immunology , Coronavirus Infections/complications , Coronavirus Infections/immunology , Coronavirus Infections/virology , Extracellular Traps/drug effects , Female , Gene Expression , Humans , Interleukin-6/metabolism , Male , Middle Aged , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/virology , Pandemics , Peptides, Cyclic/therapeutic use , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL